Refinement Action-Based Framework For Utilization Of Softcomputing In Inductive Learning

نویسنده

  • Petr Buryan
چکیده

In this thesis we describe a novel approach to application of Evolutionary Algorithms (EAs) into the field of Inductive Logic Programming (ILP). One of the main issues of ILP is the time complexity that comes out of the large size of ILP search space. Improving the search efficiency is therefore the main objective of this thesis. To reach this, EAs were used in this work as they have proven to be efficient solvers for many optimization problems in many applications before. The target of the thesis is to design a system that would use EAs to speed up the search process in ILP while also enabling to use full potential of ILP including the possibilities of first order logic as well as the refinement operators. In the same time we aim at developing a system that would not be too problem-specific and would be both user and implementation friendly. Unlike the traditional approaches that focus on evolving populations of logical clauses, our refinement-based approach uses the evolutionary optimization process to search for sequences of refinement actions that iteratively adapt the initial working clause so that it changes into a well classifying clause. Utilization of context-sensitive refinements (adaptations) helps the search operations to produce mostly syntactically correct concepts and enables using available background knowledge both for efficiently restricting the search space and for directing the search. To efficiently use the context information about the dataset we propose a specific structure to represent it and also an algorithm that automatically induces this structure from data prior to the start of the learning phase. The fact that the user is not required to manually define the language bias by writing down the semantic and syntactic restrictions speeds up the whole process of solving ILP tasks and gives our system the user friendliness that is needed for applying this one system to various ILP problems. In general, the EA-based ILP system presented in this work is more flexible, less problem-specific and the framework can be easily used with any stochastic search algorithm within the ILP domain. Experimental results on several data sets verify the usefulness of this approach. The benchmarking shows that our system is capable to achieve similar or even better results than other state-of-the-art ILP systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logic-based machine learning using a bounded hypothesis space : the lattice structure, refinement operators and a genetic algorithm approach

Rich representation inherited from computational logic makes logic-based machine learning a competent method for application domains involving relational background knowledge and structured data. There is however a trade-off between the expressive power of the representation and the computational costs. Inductive Logic Programming (ILP) systems employ different kind of biases and heuristics to ...

متن کامل

Presenting a Framework for Supporting Life-long Learning in Iranian public libraries and Its validation

Purpose: Since nowadays public libraries are considered lifelong learning centers, these centers must have the required standards and conditions to support lifelong learning in order that they could help society members to achieve their personal and professional learning more effectively. Accordingly, it is necessary to develop and provide a mechanism to support lifelong learning in public libr...

متن کامل

A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking

A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...

متن کامل

Concept Learning in Description Logics

The problem of learning logic programs has been researched extensively, but other knowledge representations formalisms like Description Logics are also an interesting target language. The importance of inductive reasoning in Description Logics has increased with the rise of the Semantic Web, because the learning algorithms can be used as a means for the computer aided building of ontologies. On...

متن کامل

Abstraction Refinement via Inductive Learning

ion Refinement via Inductive Learning Alexey Loginov, Thomas Reps, and Mooly Sagiv 1 Comp. Sci. Dept., University of Wisconsin; {alexey,reps}@cs.wisc.edu 2 School of Comp. Sci., Tel-Aviv University; [email protected] Abstract. This paper concerns how to automatically create abstractions for program analysis. We show that inductive learning, the goal of which is to identify general rules fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013